
ar
X

iv
:2

00
3.

00
60

6v
1 

 [
cs

.G
T

] 
 1

 M
ar

 2
02

0

Participatory Budgeting:

Models and Approaches

Haris Aziz

UNSW Sydney and Data61 CSIRO, Sydney, Australia

Nisarg Shah

University of Toronto, Canada

Abstract

Participatory budgeting is a democratic approach to deciding the funding of
public projects, which has been adopted in many cities across the world. We
present a survey of research on participatory budgeting emerging from the com-
putational social choice literature, which draws ideas from computer science
and microeconomic theory. We present a mathematical model for participatory
budgeting, which charts existing models across different axes including whether
the projects are treated as “divisible” or “indivisible” and whether there are
funding limits on individual projects. We then survey various approaches and
methods from the literature, giving special emphasis on issues of preference
elicitation, welfare objectives, fairness axioms, and voter incentives. Finally, we
discuss several directions in which research on participatory budgeting can be
extended in the future.

1. Introduction

Participatory budgeting (PB) is a paradigm which empowers residents to
directly decide how a portion of the public budget is spent. Specifically, residents
deliberate over spending priorities and vote over how the budget should be
allocated to different public projects. Projects which receive broad support
from the community are then funded through the process.

This process was initiated as a radical democratic project in the city of Porto
Alegre, Brazil, led by the leftist Workers’ Party [16]. Over the next few decades,
it quickly spread across the world; it has been implemented by over 1,500 mu-
nicipalities [51] and in locations as diverse as Guatemala, Peru, Romania and
South Africa [54]. The nonprofit organization Participatory Budgeting Project1
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alone has helped allocate more than US$300 million of public budget in 29 cities
across the US and Canada. In Europe, the effort is led by Paris and Madrid,
each spending at least $100 million a year on public projects through participa-
tory budgeting [42, 37]. In particular, Madrid developed an online open-source
platform, Decide Madrid, which has been used by more than 30 local govern-
ments [52]. PB is still spreading in more regions across the world. For example,
Toronto recently completed its three-year pilot of PB [45], and the state of New
South Wales in Australia recently started PB under the name My Community
Project.2

Participatory budgeting is typically a long process; in many municipalities,
one PB cycle takes one full year. While the exact implementation details differ
from one PB instance to another, at a high level the process is composed of
the following stages, which allow residents to come up with effective project
proposals and provide their preferences over budget allocation [54].

• First, the geographical region may be divided into several subregions (e.g.
districts), and one PB process may be conducted in each district sepa-
rately. The goal of this stage is to allow residents to focus on the projects
in their own neighborhood and community. The total available budget for
each district is also typically decided at this stage.

• Next, residents share and discuss ideas through neighborhood meetings
and online tools. This allows them to come up with preliminary project
proposals.

• These initial proposals are then developed into feasible proposals by focus
groups and vetted by experts. Often, this is the stage where a proposal
may be broken into distinct stages of implementation, and a cost estimate
may be derived for each implementation stage. Projects may also be clas-
sified into categories such as recreation, infrastructure, health, education,
transportation, etc.

• This may be followed by several rounds of deliberation through which
residents finalize a small number of proposals to be included in the final
vote.

• The final stage of the PB process is the voting stage. In this stage, el-
igible residents vote over how the public budget should be spent across
the finalized proposals, and these votes are aggregated into a final budget
allocation.

Additional effort is often required to make PB a success. For example, ad-
vertisement and promotion through various channels, including social media,
can be the key to increasing civic engagement. This can be crucial in encour-
aging various minorities to participate and ensuring that their preferences are

2https://www.nsw.gov.au/improving-nsw/projects-and-initiatives/my-community-project/

2

https://www.nsw.gov.au/improving-nsw/projects-and-initiatives/my-community-project/


incorporated into the decision-making. See the edited volumne by Shah [54] for
a detailed survey of the entire PB process.

In this chapter, we limit our attention to the final voting stage of the process.
That is, we assume that the project proposals have been detailed and finalized,
and projects to be included on the final ballot have been filtered. We also
assume that project costs have been estimated and the total available budget
is known. Research on the voting stage of the PB process focuses on four
important considerations:

(i) Decision space: Is the space of possible outcomes discrete (e.g. because
a project can only be “funded” or “not funded”)? Or is it continuous
(e.g. because a project can be allocated different amounts of funds to
implement it to different degrees of effectiveness)?

(ii) Preference modeling: How will residents’ preferences over the projects be
represented for the purpose of mathematical analysis?

(iii) Ballot design (aka preference elicitation): It is often desirable for the
modeling to allow complex preferences. However, it may be infeasible to
ask residents to report such complex preferences. What should the ballot
ask from residents which will serve as a proxy for their preferences and
allow them to effectively convey their preferences?

(iv) Vote aggregation: How will the votes cast by residents be aggregated into
a final allocation of the available public budget? How should this process
fairly incorporate aggregation the preferences of different communities of
residents and efficiently allocate the public budget?

The need for systematic modeling and study of these considerations has
recently inspired a body of research in the computational social choice litera-
ture [15, 21]. This body of research sits at the intersection of computer science,
social science, and economics, and aims to use mathematical modeling and algo-
rithmic techniques to design different approaches to the voting stage of the PB
process.3 The goal of this chapter is to present a comprehensive overview of the
research on PB in computational social choice. Some of the original contribu-
tions of this chapter include providing a unifying theoretical framework which
allows viewing the different research works through a single lens, and providing
a taxonomy of the different PB models which highlights their unique modeling
choices.

Outline:. The organization of this chapter is as follows. In Section 2, we present
a general mathematical formulation of PB, and list several prominent features

3In several PB programs, the final decision of budgets is entirely done by deliberation
by a small subset of residents. Deliberation has its advantages and disadvantages. While it
allows an in-depth discussion of possible outcomes from different perspectives, it also poses
the danger of the process being dominated by an unrepresentative subset of the residents,
thus thwarting the democratic objective.
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that distinguish different implementations of PB. Next, we focus on popular
PB models that make specific design choices in terms of these features, and
present a taxonomy of these models. We pay special attention to the represen-
tation and elicitation of preferences, and popular desiderata underlying the vote
aggregation methods.

In Section 3, we survey the research on the “integral model” of PB, in which
each project can only be fully funded or not funded. In Section 4, we survey the
research on the “continuous model” of PB, in which the funding level of each
project can lie on a continuum. We highlight the differences between motivations
and results under both discrete and continuous models. Finally, in Section 5,
we discuss possible extensions and directions for future research.

2. Mathematical Formulation

We begin by reviewing various parameters which play a key role in formu-
lating the participatory budgeting problem. Later, we consider specific choices
of these parameters, which give rise to popular PB models.

• Residents: There is a set of residents (a.k.a. agents or voters) N =
{1, . . . , n}. In some applications of PB, residents are divided across differ-
ent geographical regions (e.g. districts or wards), and each region conducts
a separate PB election, in which residents of that region vote.

• Resources and budgets: There is a set of d resources, denoted R. The
available budget is ~B = (B1, . . . , Bd), where Br denotes the amount of
resource r available. In most applications of PB, money is the only limiting
resource. Thus, much of the work on PB in computational social choice
has focused on the case of a single resource, in which case the available
budget is denoted by the scalar B.

• Projects: There is a set of projects P = {p1, . . . , pm}. In some applica-
tions, projects are categorized into various domains (e.g. infrastructure,
security, education, health & wellness, etc).

• Degree of completion: Some projects can be completed to different de-
grees. For example, completing 65% of a project proposing neighborhood
clean-up may mean a part of the neighborhood being cleaned up. Some
projects may have discrete milestones, and only the first few milestones
may be achieved; e.g., a project proposing the creation of a public park
may include construction of the park as the first milestone and construc-
tion of a children’s playground within the park as the second milestone.
For other projects, the degree of completion may be binary; they must
be either fully implemented or not implemented at all (e.g. installing a
fountain in a park). For project p, let Xp denote the set of its possible
degrees of completion and xp denote its actual degree of completion in an
outcome. In some models of PB, which we refer to as bounded models ,
there is an upper bound (a.k.a. cap) on the degree of completion of each
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project p, denoted by qp. In unbounded models, there are no such caps.4

We discuss popular choices of Xp in Section 2.1. We assume 0 ∈ Xp for
all projects p. Let X = Xp1

× . . .Xpm
. Various models of PB studied

in the literature crucially differ in this key choice; we elaborate on this in
Section 2.1.

• Costs: Each project p ∈ P has an associated cost function cp : Xp → R
d,

where the vector cp(xp) gives the amount of each resource required to

complete project p to degree xp. We assume that cp(0) = ~0 and cp is
monotonically non-decreasing.

• Budget Allocations: An outcome ~x = (xp)p∈P ∈ X is characterized by the
degree of completion of each project p. Note that this also specifies the
amounts of different resources that will be devoted to each project. The
outcome is feasible if

∑
p∈P cp(xp) ≤ ~B, where addition is component-

wise. We refer to feasible outcomes as (budget) allocations. Let A denote
the space of allocations.

• Resident Preferences: Each resident i ∈ N has preferences over which
projects should be implemented and to what degree. These can be rep-
resented through an ordinal preference relation ≻i or a cardinal utility
function ui over the space of allocations A . We elaborate on this later in
Section 2.2.1.

Participatory Budgeting (PB)

Discrete PB

Bounded
Discrete PB

(Combinatorial PB)

Unbounded
Discrete PB

Divisible PB

Bounded
Divisible PB

Unbounded
Divisible PB
(Portioning)

Figure 1: A taxonomy of participatory budgeting models.

2.1. Decision Space and Popular PB Models

Figure 1 presents a taxonomy of the popular PB models in the literature,
which crucially differ in their modeling of the possible degrees of completion of
projects. We review each model in further detail.

4Note that the cost function of a project and the total available budget may still induce
an effective upper bound on its degree of completion.
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Bounded Discrete PB (Combinatorial PB):. This is perhaps the most widely
studied and applied model of PB. In this model, projects must be either fully
implemented or not implemented at all. Hence, the set of possible degrees of
completion is Xp = {0, 1} for each project p ∈ P . Note that this model has
unit caps (qp = 1). Consequently, the cost function cp of project p is effectively
a vector, which indicates the amounts of different resources needed to fully
implement project p. Feasible allocations in A are subsets of projects which
can be implemented simultaneously subject to budget constraints. In essence,
this is a multi-agent variant of a multi-dimensional knapsack problem.

Discrete PB:. In this model, each project p has discrete possible degrees of
completion. However, unlike combinatorial PB, there may be more than two
possible degrees of completion. These degrees of completion can also mathe-
matically capture funding of multiple of units of the same project. For example
installing 10 units of public toilets can be viewed as having a single project with
10 different degrees of completion. Typically, we assume that Xp = N∪ {0} for
each project p. Note that this model has no cap on the degree of completion,
but limited availability of resources may still place a natural upper bound on
the degree of completion of each project in any feasible allocation. This model
is applicable when each project is ambitious, and its full implementation can
potentially use up all the available resources.

Divisible PB:. In this model, it is assumed that projects can be implemented
to any fractional degree. In the version with caps, we can assume without loss
of generality that the cap is qp = 1, i.e., Xp = [0, 1] for each project p ∈ P ; in
this case, xp denotes the fraction of project p that is completed. In practice,
projects often cannot be executed to arbitrary fractional degrees. However, in
cases of sufficient granularity, assuming divisible PB can help for computational
reasons; more details are provided in Section 4.

Unbounded Divisible PB (Portioning):. In this model of divisible PB, there are
no caps on the degrees of completion. Thus, Xp = R+ for each project p. When
there is a single resource type (e.g. money), under mild assumptions5, deciding
the degrees of completion of different projects is equivalent to deciding how the
available budget will be divided among the projects. This setting is known as
portioning in the literature [1].

Example 1. Example Suppose there is a set of 3000 residents N = {1, . . . , 3000},
a set of four projects P = {A,B,C,D}, and a single resource (money) with a
total budget of $7 million. Suppose the cost functions of the projects are as
follows.

• cA(xA) = $3 million × xA

5E.g., if the cost function of each project is strictly increasing, then there is a one-to-
one correspondence between the amount of money allocated to the project and its degree of
completion.
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• cB(xB) = $3 million × xB

• cC(xC) = $2 million × xC

• cD(xD) = $2 million × xD

Suppose 2000 residents like projects A and B equally, but derive no value
from C or D. 500 residents derive value only from C, and the remaining 500
only from D.

In the divisible PB model with unit caps (i.e. Xp = [0, 1] for each project
p), we have numerous choices. For instance, we could implement 7/10 fraction
of each project. Or we could implement 1/2 fraction of A and B each, and fully
implement C and D.

In the combinatorial PB model (i.e. Xp = {0, 1} for each project p), given
the budget of $7 million, we can implement A and B, which would make 2000
residents very happy but 1000 residents very unhappy, or we can implement
one of A and B together with both C and D, which would make 2000 residents
partially happy and 1000 residents very happy.

How do we quantify how happy the residents are? How do we make tradeoffs
between such decisions? To understand this better, we need to understand
modeling of resident preferences and goals of the PB process, which we review
below.

2.2. Preference Modeling and Ballot Design

Two important decisions in the PB process are the modeling of residents’
preferences (which helps in the mathematical analysis of the effectiveness of the
process) and the format in which the residents cast their votes.

2.2.1. Preference Modeling

Recall that A is the set of feasible allocations. In an expressive model,
each resident i has a cardinal utility function ui : A → R.6 If only comparisons
among allocations are required, one may work instead with an ordinal preference
relation ≻i over A .7

While such an expressive modeling allows capturing all possible preferences,
it does not utilize the structure that is often present in the preferences. Below,
we discuss three common approaches to modeling such structure.

The first approach is to directly impose a structural assumption on the utility
function or the preference relation. For example, in combinatorial PB, where

6We note that in this case, much of the existing research on PB in computational social
choice, inspired from classical research on voting, implicitly assumes that ui(~0) = 0 and ui

satisfies monotonicity (i.e. ui(~x) ≥ ui(~x′) for ~x ≥ ~x′). In words, implementing more projects
or implementing projects to a greater degree cannot bring less happiness. In the PB con-
text, implementing projects requires spending costly resources, which makes this assumption
questionable. See Section 5 for further discussion.

7The ordinal preference relation is typically assumed to be transitive and complete.
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allocations are effectively feasible subsets of projects and a utility function can
be represented as ui : 2

P → R, one may impose that ui satisfies subadditivity or
submodularity (when projects are substitutes of each other), or superadditivity
or supermodularity (when projects are complements of each other).

The second approach is to use spatial models, where allocations are embed-
ded in a metric space, each resident has a preferred allocation, and her utility
for another allocation is a (typically non-increasing) function of its distance to
her preferred allocation. For example, Garg et al. [33] study ℓp normed utilities,
under which the utility of resident i (with preferred allocation ~x∗

i ) for allocation
~x is ui(~x) = −‖~x− ~x∗

i ‖p, where ‖ · ‖p is the ℓp norm.
The third — and perhaps the most popular — approach is to model residents’

preferences over individual projects and use a natural rule to extend them to
preferences over allocations. Below, we review common ways to achieve this for
both cardinal utility functions and ordinal preference relations.

Cardinal extensions:. Fain et al. [23] study the class of scalar separable util-
ity functions, whereby resident i derives utility ui,p · fp(xp) from each project
p,8 and her utility for an allocation ~x is simply additive across projects, i.e.,
ui(~x) =

∑
p∈P ui,p · fp(xp). This is a reasonable assumption when the different

project proposals are completely independent of each other. In case of com-
binatorial PB, where xp ∈ {0, 1} for each project p, this effectively reduces to
ui(S) =

∑
p∈S ui,p for each S ⊆ P ; this is commonly known as an additive

utility function [9, 25, 10]. A further restriction of ui,p ∈ {0, 1} for each resident
i and project p gives rise to dichotomous preferences [7, 28], under which each
resident approves or disapproves each project and only cares about the number
of her approved projects that are implemented. In combinatorial PB, another
common extension is the max set extension [17], whereby the utility of a resi-
dent for an allocation is her utility for her most favorite project that is funded:
ui(S) = maxp∈S ui,p for each S ⊆ P . This is applicable when the projects are
substitutes of each other, and the resident will derive value from only one of the
implemented projects.

Ordinal extensions:. When residents are assumed to have ordinal preferences
over projects, we use the following notation. Each resident i has a weak order
preference relation ≻i over P . We denote by ≻i the strict part and by ∼i the
indifference part of the relation ≻i. We denote by E1

i , . . . , E
ki

i the equivalence

classes of the relation ≻i in decreasing order of preferences; thus, each set Ej
i is

a maximal equivalence class of objects among which agent i is indifferent, and
ki is the number of equivalence classes. Given an ordinal preference relation ≻i,
one can induce resident i’s preference relation over the set of allocations A in
several natural ways.

The (first order) stochastic dominance (SD) extension is defined as follows
(see, e.g., Brandl et al. [14]). For allocations ~x, ~y ∈ A , we say that ~x ≻SD

i ~y

8Note that fp : Xp → R is a resident-independent function. Typically, it is assumed to be
non-decreasing, and when Xp is continuous, smooth and concave as well.
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iff
∑l

j=1

∑
p∈E

j

i
xp ≥

∑l

j=1

∑
p∈E

j

i
yp for all l ∈ {1, . . . , ki}. Since this exten-

sion requires adding the degrees of completion of different projects, it makes
more sense in models where the degrees of completion of different projects are
comparable (e.g. in combinatorial PB or divisible PB with unit caps). The de-
sirable aspect of the SD extension is that ~x ≻SD

i ~y is equivalent to saying that
~x yields at least as much utility to resident i as ~y does, for all additive utilities
over projects that are consistent with preference relation ≻i. However, the SD
relation is not complete (i.e. it does not compare every pair of allocations).

One popular complete extension is the lexicographic extension ≻lex
i , under

which resident i is assumed to care significantly more about project p than about
project p′ whenever p ≻i p

′. Formally, ~x ≻lex
i ~y iff for the smallest (if any) l

with
∑

p∈El
i
xp 6=

∑
p∈El

i
yp, we have

∑
p∈El

i
xp >

∑
p∈El

i
yp. Once again, since

this requires adding the degrees of completion of different projects, it makes
more sense when the degrees of completion of different projects are compara-
ble. However, if each resident submits a strict ordering over the projects, the
equivalence classes become singletons and the definition makes sense for other
models of PB too. For combinatorial PB, under the lexicographic extension,
resident i compares two allocations by comparing her most favorite project that
implemented in each allocation, breaking ties by her next most favorite project,
and so on. This is similar to the max set extension mentioned above for cardinal
utility functions, and is a reasonable assumption when projects are substitutes
of each other.9 Klamler et al. [41] study a broader class of preference extensions
that includes the lexicographic extension.

Another complete extension is derived by converting ordinal preferences to
cardinal preferences using scoring rules. A scoring vector is denoted by ~s =
(s1, . . . , sm), where s1 ≥ . . . ≥ sm ≥ 0. Given a ranking ≻i over projects, it is
assumed that resident i has utility ui,p = sk for project p, where k is the rank
of project p under ≻i. Then, any of the cardinal extensions mentioned above
can be used to induce the resident’s preferences over allocations.

2.2.2. Ballot Design

Even in the simplest case of combinatorial PB, there can be exponentially
many allocations. This makes it infeasible to ask residents to communicate their
full preferences, thus motivating the use of more restrictive preference elicitation
techniques.

For example, even when residents’ preferences over allocations are induced
from their ranked preferences over individual projects, asking residents to rank
as many as 20 projects10 can be tiresome, and the cognitive burden can lead
to fewer residents voting or residents making poor choices [38]. Hence, most
real-world applications of PB use easier ballot formats such as k-approval vot-

9For instance, the projects may propose to build public parks in different locations, but a
resident may only be interested in using a single park that is built closest to her home.

10The 2018 PB in Cambridge, USA involved 20 projects:
https://pb.cambridgema.gov/pbcycle5
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ing (where residents approve the k projects they like the most), approval vot-
ing (where residents approve all projects that they like), range voting (where
residents rate projects), or knapsack voting (where residents provide the ideal
allocation according to their preferences) [36].

2.3. Vote Aggregation

Once the representation of residents’ preferences and the format in which
they cast their votes are decided, the next challenge is to decide how to aggregate
their votes into a collective outcome, which can be a single allocation or a
distribution over allocations (if randomization is permitted).

This is perhaps the most well-studied aspect of the entire PB process. We
review several prominent approaches to vote aggregation in computational social
choice.

2.3.1. Welfare Maximization

This approach is applicable when individual preferences are represented as
cardinal utility functions. It uses a social welfare function, which combines
individual utility functions of residents into a societal utility function, and finds
an allocation maximizing this societal utility function. There are three popular
social welfare functions:

• The utilitarian welfare of an allocation is the sum of utilities it gives to
residents: UW (~x) =

∑
i∈N ui(~x) for ~x ∈ A .

• The egalitarian welfare of an allocation is the minimum utility it gives to
any resident: EW (~x) = mini∈N ui(~x) for ~x ∈ A . Maximizing this welfare
function is seen as an extreme form of one interpretation of fairness.

• The Nash welfare of an allocation is the product of utilities it gives to
residents: NW (~x) =

∏
i∈N ui(~x) for ~x ∈ A . Maximizing this welfare

function is seen as a compromise between utilitarianism and egalitrianism.

2.3.2. The Axiomatic Approach

This approach entails specifying intuitive normative axioms that the vote
aggregation rule must satisfy and searching for rules that satisfy as many of the
axioms as possible. Many compelling axioms have been proposed for PB (see,
e.g., [7, 28]); the two examples given below are selected because they apply to
all the models of PB we described above.

Definition 1 (Exhaustiveness [7]). A feasible outcome (i.e. allocation) ~x is
called exhaustive if an outcome ~y is not feasible whenever yp ≥ xp for all projects
p and a strict inequality holds for at least one project. In words, it should not be
possible to implement any more projects or any projects to a greater degree with
the leftover budget. A vote aggregation rule is exhaustive if it always outputs
an exhaustive allocation. A similar axiom is termed budget monotonicity by
Faliszewski and Talmon [28].
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Definition 2 (Discount Monotonicity [28]). Suppose a vote aggregation rule
outputs allocation ~x. Suppose project p receives a revised cost function c′p such
that c′p(xp) ≤ cp(xp) for all xp ∈ Xp, and, all else being equal, the vote aggre-
gation rule now outputs allocation ~y. Then, yp ≥ xp. In words, if a project
becomes more affordable, it should not be implemented to a lesser degree.

Faliszewski and Talmon [28] study a number of additional axioms that are
specifically applicable to settings where residents have dichotomous preferences.

2.3.3. Fairness

Finally, an important consideration in democratic decision making is to fairly
take into account the preferences of all residents when making the collective
decision. We review one fairness axiom that is applicable in our general PB
framework. For other axioms that are applicable in more specific environments
(e.g. with dichotomous preferences), we refer interested readers to the work of
Aziz et al. [7].

Definition 3 (Core [23, 25]). An allocation ~x is said to be in the core if no

subset of residents S ⊆ N can find an outcome ~x′ that is feasible given a budget
of |S|/n · ~B such that ui(~x′) ≥ ui(~x) for every resident i ∈ S and a strict
inequality holds for at least one i ∈ S.

The notion of the core is based on the idea that a group of residents S
collectively deserve at least |S|/n fraction of the budget spent on their needs.
This is formalized by requiring that they not be able to allocate this fraction of
the budget in a way that they prefer more.

3. Discrete Participatory Budgeting

We are now ready to review how these approaches have been applied to
different models of PB. Recall that in the discrete model, the decision space is
discrete. This model is applicable when projects can only be executed up to
discrete levels. For example, a project p that proposes to build public toilets
in the community can have degree of completion xp ∈ N ∪ {0}, where xp may
denote the number of public toilets that are actually built; the assumption here
is that each individual toilet is either built fully or not built at all. This discrete
aspect affects the modeling of residents’ preferences as well as the design of
ballots and vote aggregation procedures.

This model is a natural generalization of multi-winner voting (alternatively
known as committee selection), which has been widely studied in social choice
theory [5, 26]. In multi-winner voting, there are m candidates, and k of them
are to be selected based on voters’ preferences. This is a special case of discrete
PB (more specifically, of combinatorial PB) where each candidate p is a project
with unit cap (qp = 1) and unit cost (cp = 1), and the budget limit is k. We
first review prior literature on multi-winner voting and other similar models of
decision-making, and then provide an overview of various approaches to discrete
PB.
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3.1. Review of the Literature on Settings Related to Discrete PB

The simplest special case of combinatorial PB is multi-winner voting. As
explained above, this is where each project has unit cost. A natural goal in
this setting is to maximize the utilitarian welfare. In this case, each voter ap-
proves a subset of candidates, and the goal is to select k candidates with the
highest number of total approvals. This can be accomplished efficiently by a
greedy algorithm which selects candidates one-by-one in the decreasing order
of the number of approvals they receive. However, when we replace the selec-
tion of k candidates by a knapsack constraint to extend this to combinatorial
PB with dichotomous preferences, the problem becomes NP-hard even for a
single agent [40]. The greedy algorithm is still well-defined in this setting; it
selects projects one-by-one in the decreasing order of the number of approvals
they receive, skipping any project if its inclusion exceeds the budget limit. This
aggregation rule is often used in practice.11 The literature also focuses on sev-
eral other objectives in multi-winner voting; an excellent overview is given by
Faliszewski et al. [26].

Klamler et al. [41] also focus on committee selection under knapsack con-
straints. However, in their model, there is a single agent with a ranking over
individual candidates (projects). They explore different ways to extend this to
a ranking over sets of candidates, and then select a committee of k candidates
subject to a knapsack constraint. A similar model has been considered by Delort
et al. [19].

Another model related to PB is combinatorial public projects (CPP) [46].
In this model, a set of public projects are to be selected subject to a resource
constraint, similarly to PB. However, research on CPP focuses on designing
truthful mechanisms by charging payments to agents [20], which is unrealistic
in the PB setting.

Conitzer et al. [18] propose the public decision making model, in which there
are a finite number of issues, and for each issue, there is a set of alternatives
which can be implemented. A feasible outcome consists of choosing a single
alternative corresponding to each issue. One can view this as a special case of
discrete PB, where each issue corresponds to a unique type of resource of which
one unit is available and implementing any alternative of an issue requires the
full one unit of the corresponding resource. One of the fairness definitions they
propose is proportionality up to one issue, which is a relaxation of the core
defined in Section 2.3.3.

Lu and Boutilier [43] introduce budgeted social choice. In this framework,
each alternative has a cost and the goal is to select a set of alternatives subject
to budget constraint. This framework generalizes the PB model we discuss as it
allows the cost of an alternative to be dependent on the number of voters who
derive utility from that alternative. However, they work with a limited modeling
of preferences wherein there is a common positional scoring rule which maps
an alternative’s rank in a voter’s preference ranking to the voter’s utility for

11See, for example, the PB process in Toronto [45] and in Cambridge [44].
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the alternative. This is also a common approach in the resource allocation
literature [13].

3.2. Approaches to Discrete PB

We now provide an overview of various approaches to PB in the discrete
model.

Welfare maximization:. This is a natural approach when residents have cardinal
utilities. Maximizing the utilitarian welfare subject to the budget constraint
is the classic knapsack problem. While the problem is NP-hard [40], there
exists a pseudo-polynomial time dynamic programming algorithm and a fully
polynomial time approximation scheme (FPTAS) [56].

Fluschnik et al. [29] consider the combinatorial PB model and study the
computational complexity of maximizing (1) the utilitarian social welfare with
respect to additive utilities, (2) the utilitarian social welfare with respect to the
max extension, and (3) the Nash social welfare with respect to additive utilities.
All of these problems are NP-hard except under severe restrictions on residents’
utility functions.

Elicitation:. Eliciting cardinal utilities in the PB context can be challenging and
may impose high cognitive burden on the voters, potentially even deterring them
from voting in the first place [33]. This has inspired a line of research that aims
to propose simpler ballot formats. Goel et al. [36] introduce knapsack voting,
under which residents simply report their favorite allocation. They suggest
aggregating knapsack votes using a greedy approach. In combinatorial PB, the
number of “approvals” that a project receives is the number of residents who
include the project in their favorite allocation, and projects are selected in the
decreasing order of their number of approvals subject to the budget constraint.
In discrete PB, the algorithm starts by setting the degree of completion of
each project to zero. Then, at each step, it considers increasing the degree of
completion of each project to its next possible value, and among the feasible
improvements, selects the one which is part of the favorite allocation of most
voters. They show that this approach has compelling welfare and incentive
guarantees under restrictive models of resident preferences.

Benade et al. [9] compare knapsack voting to three other ballot formats:
ranking projects by value, ranking projects by value-for-money, and a new for-
mat that they call threshold approval voting. They use the implicit utilitarian
voting framework [48, 12], in which residents are assumed to have underlying
cardinal utilities and the information they provide on the ballot is treated as a
proxy for their underlying utilities. They show that in the worst case, knapsack
voting leads to an exponentially bad approximation of utilitarian welfare, rank-
ing projects by value or value-for-money leads to a polynomially bad approxi-
mation, and threshold approval voting leads to a logarithmic approximation.
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Incentives:. Another line of research studies residents’ incentive to misreport
their preferences in order to induce an outcome that is better than what would
be implemented had they reported their honest preferences. While all reasonable
deterministic aggregation rules are susceptible to such manipulations due to
the classic impossibility result by [34] and [53], Bhaskar et al. [10] show that
when residents rank projects by value, there exist randomized aggregation rules
that are strategyproof (i.e. provide no incentive to residents to misreport) and
achieve nearly optimal approximation of utilitarian welfare among all (even non-
strategyproof) aggregation rules, implying that, at least when randomization is
allowed, strategyproofness does not impose a significant burden in this setting.

Axiomatic desiderata:. Aziz et al. [7] begin the formal study of defining ax-
ioms for PB that encode principles of proportional representation. They de-
sign algorithms for combinatorial PB with dichotomous preferences which sat-
isfy such axioms. Their central result is an algorithm called the generalized
Phragmen’s sequential rule, which computes an allocation satisfying a reason-
able proportional representation property. An alternative simple method, which
is motivated by proportional representation concerns, is discussed by Aziz [3].
Faliszewski and Talmon [27], in the same model, focus on monotonicity-style
axioms of a range of aggregation rules. The common approach in this line of
work is to focus on axioms and algorithms for multi-winner voting [5, 26] and
extend them to combinatorial PB.

Since combinatorial PB is more general than multi-winner voting, the neg-
ative existential and computational results from multi-winner voting carry over
directly. For example, strategyproofness and any weak notion of proportional
representation are inherently incompatible [47], and finding Pareto optimal al-
locations is typically NP-hard [6].

Shapiro and Talmon [55] generalize Condorcet’s principle (also referred to
as popularity in allocation settings) to PB and devise an algorithm to com-
pute allocations satisfying this principle. Since Condorcet’s principle is based
on majoritarian comparisons, the approach is not well-suited for proportional
representation of minorities, which is a prime concern in real-world applications
of PB [57, 31].

Fairness:. [25] investigate fairness in a setting that generalizes discrete PB. In
particular, they show that allocations in the core may not exist in discrete PB
with additive utilities, but allocations that provide a logarithmic approximation
of the core are guaranteed to exist and can be computed efficiently. For the
special case of discrete PB with binary additive utilities (where each resident
has utility 1 or 0 for each project, and utilities are additive across projects), it
is an open question whether allocations in the core always exist. Other work
on proportional representation for the combinatorial PB model (see e.g. Aziz
et al. [7]) can also be viewed as focussing on fairness.

Other approaches:. [49] study the combinatorial PB model with additive util-
ities. They propose to use a generalization of the Kalai-Smorodinsky [1975]
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cooperative game solution to find a desirable allocation. A similar approach is
taken by [50].

4. Divisible Participatory Budgeting

The divisible model of PB applies to scenarios in which funding for a project
can lie on a continuum. For instance, recall the example from Section 3, which
involved a project proposing to build five public toilets in the neighborhood.
We argued that this falls under the discrete model of PB, as one can only
provide funding to build an integral number of toilets. In contrast, a project on
maintaining the cleanliness of the toilets may be funded partially without any
integral restrictions, and thus may fall under the divisible model of PB.

While a divisible model can often be approximated by a discrete model, the
divisible model is interesting in its own right as it often leads to better existential
and computational results (see, e.g., the work of [25]).

4.1. Review of the Literature on Settings Related to Divisible PB

A strand of the literature focuses on a multi-dimensional continuous space,
where the dimensions correspond to categories of projects such as defense, health
and education [33, 30]. The model is especially relevant when deciding the com-
position of funding across different categories is more important than deciding
particular projects within a category. This literature typically works with the
spatial model of resident preferences, in which each resident has an ideal point
in the space. The is closely related to spatial voting models studied in political
science [22, 2]

Recall that in bounded divisible PB, each project has a cap of qp = 1 (with-
out loss of generality). One might consider a special case of this setting, where
the cost function of each project p is given by cp(xp) = xp, and the total budget
is B = 1. Thus, the set of feasible allocations is given by {~x :

∑
p∈P xp ≤ 1}.

This can be thought of as portioning (also called fair mixing) [4], where xp can
be thought of as the fraction of budget devoted to project p (after appropriate
renormalization of cost functions). As noted in Section 2.1, this is equivalent
to the unbounded divisible PB model. Alternatively, one can also think of this
model as representing probabilistic voting [35], where each project p is a can-
didate and xp denotes the probability of choosing candidate p as the winner of
the election.

4.2. Approaches to Divisible PB

Welfare maximization:. Goel et al. [36] study the divisible model of PB with
unit caps. They consider cardinal additive utilities as well as a spatial model
of utilities. They point out that a simple greedy algorithm finds an allocation
maximizing the utilitarian welfare. This algorithm sorts the projects in decreas-
ing order of their value-for-money (

∑
i∈N ui(p)/cp), and fully funds projects in

this order until no more projects can be fully funded. The remaining budget is
allocated to partially fund the next project in the list.
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Garg et al. [33] consider a model of decision-making in continuous spaces
that is more general than PB. In their model, each resident i has a favorite
point ~xi in the space, and her utility for an allocation ~x is based on the ℓp norm,
specifically, ui(~x) = −‖~x− ~xi‖p. They study a class of algorithms called iterative
local voting (ILV), in which residents are iteratively asked to modify the current
allocation by moving it towards their favorite allocation within a local neighbor-
hood until convergence. This approach adopts the classic stochastic gradient
descent (SGD) method from optimization to multi-agent decision-making.

Fairness:. Fain et al. [24] study proportional representation in the divisible
model of PB with scalar separable utility functions. They argue that a variant
of the classic game-theoretic notion of core captures fairness in the setting.
Recall that an allocation ~x is in the core if no subset of voters S can use |S|/n
of the budget to find an allocation which is no less appealing than ~x to any
member of S and strictly more appealing than ~x to some member of S. They
show that in the divisible model, there always exists an allocation in the core,
and present a polynomial-time algorithm for computing one.

Recall that in portioning (i.e. unbounded divisible PB), there are no caps
on the degrees of completion. Hence, as discussed in Section 2.1, one can nor-
malize the model such that feasible allocations satisfy

∑
p∈P xp ≤ 1, and xp can

be thought of as the fraction of budget devoted to project p [1]. Aziz et al. [4]
consider portioning — they refer to it as fair mixing — with dichotomous pref-
erences, which was originally studied by Bogomolnaia et al. [11]. They consider
the relative merits of several rules. They show that maximizing Nash welfare
satisfies several strong fairness properties including the fact that it finds an al-
location in the core. It also satisfies the average fair share (AFS) guarantee,
which requires that for any set of residents S, the average utility of residents in
S is at least |S|/n. Another rule with several desirable properties that emerges
from their study is the conditional utilitarian rule (CUT). In CUT, each res-
ident is assumed to have a ‘personal budget’ that is 1/n fraction of the total
budget.12 Each resident spreads her personal budget among the projects that
she likes that are liked by the most number of residents. Unlike the maximum
Nash welfare solution, CUT does not satisfy Pareto optimality, AFS, or core
fairness.

Airiau et al. [1] consider the portioning problem where voters express pref-
erences over individual projects and use the stochastic dominance (SD) relation
to reason about their preferences over probability distributions over projects.
They find that using a scoring rule as a proxy for utilities consistent with the
ordinal preferences and then maximizing the Nash social welfare with respect
to these proxy utilities achieves desirable notions of fairness. Another notable
example of algorithms for portioning is the egalitarian simultaneous reserva-
tion algorithm [8] for agents with weak and transitive ordinal preferences over
projects.

12Note that CUT easily generalizes to the case where agents have unequal personal budgets.
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Incentives:. Aziz et al. [4] prove that for the portioning problem with dichoto-
mous preferences, both CUT and the Nash welfare maximizing rule provide
strict incentives for residents to participate in the voting process. Additionally,
CUT is strategyproof (i.e. provides voters no incentive to misreport), while
maximizing Nash welfare is not.

Freeman et al. [30] consider the spatial voting model and focus on the set-
ting in which a resident’s disutility for an allocation is its ℓ1 distance from the
resident’s ideal allocation (a.k.a. bliss point). They present the independent
markets mechanism, which is both strategyproof and satisfies a basic notion of
proportional representation.

5. Extensions and Future Directions

We presented a survey of research on participatory budgeting. Specifically,
we presented a mathematical model which classifies existing research across
different axes, and surveyed computational and axiomatic approaches proposed
in the literature.

Research on participatory budgeting within computational social choice is
still in its infancy. As such, only limited models of resident preferences and
decision-making processes have been explored. Further research is required to
design better theoretical models and approaches for participatory budgeting,
and bridge the gap between theory and practice. To that end, it is crucial
to leverage insights from various disciplines such as computer science, social
science, microeconomics, and public policy. In this section, we review several
directions in which these models can (and should) be extended to bring them
closer to reality and for them to inform real-world implementations of PB.

• Multi-dimensional constraints: Much of the literature focuses on a sin-
gle, knapsack-style constraint which stems from a limit on the available
money. While current real-world implementations of PB also only deal
with money, this is one dimension where further research on practical ap-
proaches to conducting PB with multi-dimensional constraints that cap-
ture other types of costs (e.g. costs to the environment) can lead the
frontier of novel PB implementations.

• Voter or voter group entitlements: In the classic PB setting, giving equal
consideration (or weight) to all voters is a normative desideratum. How-
ever, one can imagine a more general setting in which different voters or
groups of voters bring different resources to the system, and their entitle-
ments need to reflect their contributions. In other words, different voters
or groups of voters may have a claim over different parts of the universal
budget.

• Distributional constraints: Some applications of PB impose lower and
upper bounds on the amount of funding which can be allocated to each

17



project or each category of projects (e.g. education or healthcare). Study-
ing the effects of such constraints on the welfare, fairness, and incentives
is an interesting direction.

• Hybrid models: While our taxonomy (and the literature) partitions PB
models into discrete and divisible, there can be hybrid models allowing
some projects to be funded only at discrete levels while others on a con-
tinuous scale.

• Complex resident preferences: Most of the positive axiomatic and algo-
rithmic results in the literature rely on stylized modeling of resident pref-
erences. In practice, residents have complex preferences which stem from
intricate synergies between different projects. An important research di-
rection is to extend the existing results to more general classes of utility
functions. For example, most utility functions considered in the literature
treat projects as independent or substitutes; tackling complementarity in
projects remains an interesting challenge.

• Initial endowments: In reality, some projects may already have some funds
allocated to them (e.g. through previous iterations of PB). The choice be-
tween extending funding to existing projects versus funding new projects
can give rise to novel challenges.

• Pledges: In some cases, private organizations may be willing to pledge
financial support to a project conditional on certain projects receiving
at least a minimum level of funding. This can affect the choice of vote
aggregation methods.

• Market-based approaches: In recent years, market-based approaches have
been investigated for public decision making [32]. Extending this line of
approach to PB can lead to intuitive mechanisms for PB.

• Strategic agent models: The work on incentives in PB focuses on strat-
egyproofness, which aims to prevent manipulations by rational agents.
However, people often do not act like rational agents. An interesting di-
rection is to use insights from behavioral game theory, develop models
of realistic manipulations that residents may use in PB, and design algo-
rithms to prevent such manipulations.

• The role of information: It requires significant effort to inform residents
of the costs, benefits, and complexities of different projects. The manner
in which this information is communicated can have significant effect on
the preferences of the residents; this is a complex issue which requires a
detailed study.

• An end-to-end model: Finally, as we mentioned at the beginning of this
chapter, we only focus on the final stage of voting within the entire PB
pipeline. However, the initial stages have a direct impact on the final out-
come. For example, the agenda-setting phase where projects are proposed
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by the residents themselves crucially affects the latter stages. Formally
modeling the entire PB process and designing end-to-end solutions is a
complex challenge of paramount importance.

To conclude, participatory budgeting is an important grassroots approach
to democracy. Research on models, methods, and axioms for PB will provide
insights that will be valuable to both the theory and practice of PB.
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